Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Poult Sci ; 103(6): 103709, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38598914

RESUMO

Untargeted metabolomic profiling, by ambient mass spectrometry and chemometric tools, has made a dramatic impact on human disease detection. In a similar vein, this study attempted the translation of this clinical human disease experience to farmed poultry for precise veterinary diagnosis. As a proof of principle, in this diagnostic/prognostic study, direct analysis in real-time high resolution mass spectrometry (DART-HRMS) was used in an untargeted manner to analyze fresh tissues (abdominal fat, leg skin, liver, and leg muscle) of pigmented and non-pigmented broilers to investigate the causes of lack of pigmentation in an industrial poultry farm. Afterwards, statistical analysis was applied to the DART-HRMS data to retrieve the molecular features that codified for 2 broiler groups, that is, properly pigmented and non-pigmented broilers. Higher abundance of oxidized lipids, high abundance of oxidized bile derivatives, and lower levels of tocopherol isomers (Vitamin E) and retinol (Vitamin A) were captured in nonpigmented than in pigmented broilers. In addition, conventional rapid analyses were used: 1) color parameters of the tissues of pigmented and non-pigmented broilers were measured to rationalize the color differences in abdominal fat, leg skin and leg muscle, and 2) macronutrients were determined in broiler leg muscle, to capture a detailed picture of the pathology and exclude other possible causes. In this study, the DART-HRMS system performed well in retrieving valuable chemical information from broilers that explained the differences between the 2 groups of broilers in absorption of xanthophylls and the subsequent lack of proper broiler pigmentation in affected broilers. The results suggest this technology could be useful in providing near real-time feedback to aid in veterinary decision-making in poultry farming.

2.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542461

RESUMO

While untargeted analysis of biological tissues with ambient mass spectrometry analysis probes has been widely reported in the literature, there are currently no guidelines to standardize the workflows for the experimental design, creation, and validation of molecular models that are utilized in these methods to perform class predictions. By drawing parallels with hurdles that are faced in the field of food fraud detection with untargeted mass spectrometry, we provide a stepwise workflow for the creation, refinement, evaluation, and assessment of the robustness of molecular models, aimed at meaningful interpretation of mass spectrometry-based tissue classification results. We propose strategies to obtain a sufficient number of samples for the creation of molecular models and discuss the potential overfitting of data, emphasizing both the need for model validation using an independent cohort of test samples, as well as the use of a fully characterized feature-based approach that verifies the biological relevance of the features that are used to avoid false discoveries. We additionally highlight the need to treat molecular models as "dynamic" and "living" entities and to further refine them as new knowledge concerning disease pathways and classifier feature noise becomes apparent in large(r) population studies. Where appropriate, we have provided a discussion of the challenges that we faced in our development of a 10 s cancer classification method using picosecond infrared laser mass spectrometry (PIRL-MS) to facilitate clinical decision-making at the bedside.


Assuntos
Fluxo de Trabalho , Humanos , Espectrometria de Massas/métodos
3.
Food Res Int ; 179: 114023, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342542

RESUMO

Currently, the authentication of ground black pepper is a major concern, creating a need for a rapid, highly sensitive and specific detection tool to prevent the introduction of adulterated batches into the food chain. To this aim, head space gas-chromatography ion mobility spectrometry (HS-GC-IMS), combined with machine learning, is tested in this initial, proof-of-concept study. A broad variety of authentic samples originating from eight countries and three continents were collected and spiked with a range of adulterants, both endogenous sub-products and an assortment of exogenous materials. The method is characterized by no sample preparation and requires 20 min for chromatographic separation and ion mobility data acquisition. After an explorative analysis of the data, those were submitted to two different machine learning algorithms (partial least squared discriminant analysis-PLS-DA and support vector machine-SVM). While the PLS-DA model did not provide fully satisfactory performances, the combination of HS-GC-IMS and SVM successfully classified the samples as authentic, exogenously-adulterated or endogenously-adulterated with an overall accuracy of 90 % and 96 % on withheld test set 1 and withheld test set 2, respectively (at a 95 % confidence level). Some limitations, expected to be mitigated by further research, were encountered in the correct classification of endogenously adulterated ground black pepper. Correct categorization of the ground black pepper samples was not adversely affected by the operator or the time span of data collection (the method development and model challenge were carried out by two operators over 6 months of the study, using ground black pepper harvested between 2015 and 2019). Therefore, HS-GC-IMS, coupled to an intelligent tool, is proposed to: (i) aid in industrial decision-making before utilization of a new batch of ground black pepper in the production chain; (ii) reduce the use of time-consuming conventional analyses and; (iii) increase the number of ground black pepper samples analyzed within an industrial quality control frame.


Assuntos
Piper nigrum , Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Mobilidade Iônica/métodos , Compostos Orgânicos Voláteis/análise , Análise Discriminante
4.
J Mass Spectrom ; 58(10): e4953, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37401136

RESUMO

Thermal desorption direct analysis in real-time high-resolution mass spectrometry (TD-DART-HRMS) approaches have gained popularity for fast screening of a variety of samples. With rapid volatilization of the sample at increasing temperatures outside the mass spectrometer, this technique can provide a direct readout of the sample content with no sample preparation. In this study, TD-DART-HRMS's utility for establishing spice authenticity was examined. To this aim, we directly analyzed authentic (typical) and adulterated (atypical) samples of ground black pepper and dried oregano in positive and negative ion modes. We analyzed a set of authentic ground black pepper samples (n = 14) originating from Brazil, Sri Lanka, Madagascar, Ecuador, Vietnam, Costa Rica, Indonesia, Cambodia, and adulterated samples (n = 25) consisting of mixtures of ground black pepper with this spice's nonfunctional by-products (pinheads or spent) or with different exogenous materials (olive kernel, green lentils, black mustard seeds, red beans, gypsum plaster, garlic, papaya seeds, chili, green aniseed, or coriander seeds). TD-DART-HRMS facilitated the capture of informative fingerprinting of authentic dried oregano (n = 12) originating from Albania, Turkey, and Italy and those spiked (n = 12) with increasing percentages of olive leaves, sumac, strawberry tree leaves, myrtle, and rock rose. A predictive LASSO classifier was built, after merging by low-level data fusion, the positive and negative datasets for ground black pepper. Fusing multimodal data allowed retrieval of more comprehensive information from both datasets. The resultant classifier achieved on the withheld test set accuracy, sensitivity, and specificity of 100%, 75%, and 90%, respectively. On the contrary, the sole TD-(+)DART-HRMS spectra of the oregano samples allowed construction of a LASSO classifier that predicted the adulteration of the oregano with excellent statistical indicators. This classifier achieved, on the withheld test set, 100% each for accuracy, sensitivity, and specificity.


Assuntos
Origanum , Piper nigrum , Espectrometria de Massas/métodos , Aprendizado de Máquina
5.
Foods ; 12(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37174409

RESUMO

The study aimed to assess the seasonal variation in raw milk volatile organic compounds (VOCs) from three indoor feeding systems based on maize silage (n = 31), silages/hay (n = 19) or hay (n = 16). After headspace solid-phase microextraction (HS-SPME), VOC profiles were determined by gas chromatography (GC). Chemical and VOC (log10 transformations of the peak areas) data were submitted to a two-way ANOVA to assess the feeding system (FS) and season (S) effects; an interactive principal component analysis (iPCA) was also performed. The interaction FS × S was never significant. The FS showed the highest (p < 0.05) protein and casein content for hay-milk samples, while it did not affect any VOCs. Winter milk had higher (p < 0.05) proportions of protein, casein, fat and some carboxylic acids, while summer milk was higher (p < 0.05) in urea and 2-pentanol and methyl aldehydes. The iPCA confirmed a seasonal spatial separation. Carboxylic acids might generate from incomplete esterification in the mammary gland and/or milk lipolytic activity, while aldehydes seemed to be correlated with endogenous lipid or amino acid oxidation and/or feed transfer. The outcomes suggested that VOCs could be an operative support to trace raw milk for further mild processing.

6.
Anal Chim Acta ; 1264: 341309, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37230724

RESUMO

BACKGROUND: In cases of suspected animal poisonings or intoxications, there is the need for high-throughput, rapid and accurate analytical tools capable of giving rapid answers and, thus, speeding up the early stages of investigations. Conventional analyses are very precise, but do not meet the need for rapid answers capable of orienting the decisions and the choice of appropriate countermeasures. In this context, the use of ambient mass spectrometry (AMS) screening methods in toxicology laboratories could satisfy the requests of forensic toxicology veterinarians in a timely manner. RESULTS: As a proof of principle, direct analysis in real time high resolution mass spectrometry (DART-HRMS) was applied to a veterinary forensic case in which 12 of a group of 27 sheep and goats died with an acute neurological onset. Because of evidence in the rumen contents, the veterinarians hypothesized an accidental intoxication after ingestion of vegetable materials. The DART-HRMS results showed abundant signals of the alkaloids calycanthine, folicanthidine and calycanthidine, both in the rumen content and at the liver level. The DART-HRMS phytochemical fingerprinting of detached Chimonanthus praecox seeds was also compared with those acquired from the autopsy specimens. Liver, rumen content and seed extracts were then subjected to LC-HRMS/MS analysis to gather additional insights and confirm the putative assignment of calycanthine anticipated by DART-HRMS. HPLC-HRMS/MS confirmed the presence of calycanthine in both rumen contents and liver specimens and allowed its quantification, ranging from 21.3 to 46.9 mg kg-1 in the latter. This is the first report detailing the quantification of calycanthine in liver after a deadly intoxication event. SIGNIFICANCE AND NOVELTY: Our study illustrates the potential of DART-HRMS to offer a rapid and complementary alternative to guide the selection of confirmatory chromatography-MSn strategies in the analysis of autopsy specimens from animals with suspected alkaloid intoxication. This method offers the consequent saving of time and resources over those needed for other methods.


Assuntos
Alcaloides , Intoxicação por Plantas , Animais , Ovinos , Autopsia , Espectrometria de Massas/métodos , Cromatografia Líquida
7.
Front Vet Sci ; 10: 1146626, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138915

RESUMO

The early diagnosis of Mycobacterium avium subsp. paratuberculosis (MAP) is one of the current challenges of farmers and veterinarians. This work aimed to investigate the changes in metabolic levels associated with natural MAP infection in infected and infectious dairy cattle. The study included sera from 23 infectious/seropositive, 10 infected but non-infectious/seronegative, and 26 negative Holstein Fresian cattle. The samples were selected from a collection of samples gathered during a prospective study. The samples were analyzed by quantitative nuclear magnetic resonance (NMR) spectroscopy and routine blood chemistry. The blood indices and the 1H NMR data were concatenated by low-level data fusion, resulting in a unique global fingerprint. Afterwards, the merged dataset was statistically analyzed by the least absolute shrinkage and selection operator (LASSO), which is a shrinkage and selection method for supervised learning. Finally, pathways analysis was performed to get more insights on the possible dysregulated metabolic pathways. The LASSO model achieved, in a 10 time repeated 5-fold cross-validation, an overall accuracy of 91.5% with high values of sensitivity and specificity in classifying correctly the negative, infected, and infectious animals. The pathway analysis revealed MAP-infected cattle have increased tyrosine metabolism and enhanced phenylalanine, tyrosine and tryptophan biosynthesis. The enhanced synthesis and degradation of ketone bodies was observed both in infected and infectious cattle. In conclusion, fusing data from multiple sources has proved to be useful in exploring the altered metabolic pathways in MAP infection and potentially diagnosing negative animals within paratuberculosis-infected herds.

8.
Front Microbiol ; 14: 1150942, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125166

RESUMO

This study developed and validated a method, based on the coupling of Fourier-transform infrared spectroscopy (FT-IR) and machine learning, for the automated serotyping of Legionella pneumophila serogroup 1, Legionella pneumophila serogroups 2-15 as well as their successful discrimination from Legionella non-pneumophila. As Legionella presents significant intra- and inter-species heterogeneities, careful data validation strategies were applied to minimize late-stage performance variations of the method across a large microbial population. A total of 244 isolates were analyzed. In details, the method was validated with a multi-centric approach with isolates from Italian thermal and drinking water (n = 82) as well as with samples from German, Italian, French, and British collections (n = 162). Specifically, robustness of the method was verified over the time-span of 1 year with multiple operators and two different FT-IR instruments located in Italy and Germany. Moreover, different production procedures for the solid culture medium (in-house or commercial) and different culture conditions (with and without 2.5% CO2) were tested. The method achieved an overall accuracy of 100, 98.5, and 93.9% on the Italian test set of Legionella, an independent batch of Legionella from multiple European culture collections, and an extra set of rare Legionella non-pneumophila, respectively.

9.
Cancers (Basel) ; 14(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36291837

RESUMO

Neoadjuvant chemotherapy (NACT) is offered to patients with operable or inoperable breast cancer (BC) to downstage the disease. Clinical responses to NACT may vary depending on a few known clinical and biological features, but the diversity of responses to NACT is not fully understood. In this study, 80 women had their metabolite profiles of pre-treatment sera analyzed for potential NACT response biomarker candidates in combination with immunohistochemical parameters using Nuclear Magnetic Resonance (NMR). Sixty-four percent of the patients were resistant to chemotherapy. NMR, hormonal receptors (HR), human epidermal growth factor receptor 2 (HER2), and the nuclear protein Ki67 were combined through machine learning (ML) to predict the response to NACT. Metabolites such as leucine, formate, valine, and proline, along with hormone receptor status, were discriminants of response to NACT. The glyoxylate and dicarboxylate metabolism was found to be involved in the resistance to NACT. We obtained an accuracy in excess of 80% for the prediction of response to NACT combining metabolomic and tumor profile data. Our results suggest that NMR data can substantially enhance the prediction of response to NACT when used in combination with already known response prediction factors.

10.
Front Chem ; 10: 982377, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092679

RESUMO

Animal poisoning and dissemination of baits in the environment have public health and ethological implications, which can be followed by criminal sanctions for those responsible. The reference methods for the analysis of suspect baits and autopsy specimens are founded on chromatographic-based techniques. They are extremely robust and sensitive, but also very expensive and laborious. For this reason, we developed an ambient mass spectrometry (AMS) method able to screen for 40 toxicants including carbamates, organophosphate and chlorinated pesticides, coumarins, metaldehyde, and strychnine. Spiked samples were firstly purified and extracted by dispersive solid phase extraction (QuEChERS) and then analyzed by direct analysis in real time high-resolution mass spectrometry (DART-HRMS). To verify the performance of this new approach, 115 authentic baits (n = 59) and necropsy specimens (gastrointestinal content and liver, n = 56) were assessed by the official reference methods and combined QuEChERS-DART-HRMS. The agreement between the results allowed evaluation of the performances of the new screening method for a variety of analytes and calculation of the resultant statistical indicators (the new method had overall accuracy 89.57%, sensitivity of 88.24%, and a specificity of 91.49%). Taking into account only the baits, 96.61% of overall accuracy was achieved with 57/59 samples correctly identified (statistical sensitivity 97.50%, statistical specificity 94.74%). Successful identification of the bitter compound, denatonium benzoate, in all the samples that contained rodenticides (28/28) was also achieved. We believe initial screening of suspect poison baits could guide the choice of reference confirmatory methods, reduce the load in official laboratories, and help the early stages of investigations into cases of animal poisoning.

11.
Foods ; 11(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35954032

RESUMO

This feasibility study reports the use of direct analysis in real-time high-resolution mass spectrometry (DART-HRMS) in profiling the powders from edible insects, as well as the potential for the identification of different insect species by classification modeling. The basis of this study is the revolution that has occurred in the field of analytical chemistry, with the improved capability of ambient mass spectrometry to authenticate food matrices. In this study, we applied DART-HRMS, coupled with mid-level data fusion and a learning method, to discriminate between Acheta domesticus (house cricket), Tenebrio molitor (yellow mealworm), Locusta migratoria (migratory locust), and Bombyx mori (silk moth). A distinct metabolic fingerprint was observed for each edible insect species, while the Bombyx mori fingerprint was characterized by highly abundant linolenic acid and quinic acid; palmitic and oleic acids are the statistically predominant fatty acids in black soldier fly (Hermetia illucens). Our chemometrics also revealed that the amino acid proline is a discriminant molecule in Tenebrio molitor, whereas palmitic and linoleic acids are the most informative molecular features of the house cricket (Acheta domesticus). Good separation between the four different insect species was achieved, and cross-validation gave 100% correct identification for all training samples. The performance of the random forest classifier was examined on a test set and produced excellent results, in terms of overall accuracy, sensitivity, and specificity. These results demonstrate the reliability of the DART-HRMS as a screening method in a future quality control scenario to detect complete substitution of insect powders.

12.
Sci Rep ; 12(1): 7360, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513691

RESUMO

Metabolomics approaches, such as direct analysis in real time-high resolution mass spectrometry (DART-HRMS), allow characterising many polar and non-polar compounds useful as authentication biomarkers of dairy chains. By using both a partial least squares discriminant analysis (PLS-DA) and a linear discriminant analysis (LDA), this study aimed to assess the capability of DART-HRMS, coupled with a low-level data fusion, discriminate among milk samples from lowland (silages vs. hay) and Alpine (grazing; APS) systems and identify the most informative biomarkers associated with the main dietary forage. As confirmed also by the LDA performed against the test set, DART-HRMS analysis provided an accurate discrimination of Alpine samples; meanwhile, there was a limited capacity to correctly recognise silage- vs. hay-milks. Supervised multivariate statistics followed by metabolomics hierarchical cluster analysis allowed extrapolating the most significant metabolites. Lowland milk was characterised by a pool of energetic compounds, ketoacid derivates, amines and organic acids. Seven informative DART-HRMS molecular features, mainly monoacylglycerols, could strongly explain the metabolomic variation of Alpine grazing milk and contributed to its classification. The misclassification between the two lowland groups confirmed that the intensive dairy systems would be characterised by a small variation in milk composition.


Assuntos
Leite , Silagem , Animais , Biomarcadores/análise , Dieta , Espectrometria de Massas , Leite/química , Silagem/análise
13.
J Appl Microbiol ; 132(2): 1479-1488, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34543502

RESUMO

AIMS: The efficacy of ambient mass spectrometry to identify and serotype Legionella pneumophila was assessed. To this aim, isolated waterborne colonies were submitted to a rapid extraction method and analysed by direct analysis in real-time mass spectrometry (DART-HRMS). METHODS AND RESULTS: The DART-HRMS profiles, coupled with partial least squares discriminant analysis (PLS-DA), were first evaluated for their ability to differentiate Legionella spp. from other bacteria. The resultant classification model achieved an accuracy of 98.1% on validation. Capitalising on these encouraging results, DART-HRMS profiling was explored as an alternative approach for the identification of L. pneumophila sg. 1, L. pneumophila sg. 2-15 and L. non-pneumophila; therefore, a different PLS-DA classifier was built. When tested on a validation set, this second classifier reached an overall accuracy of 95.93%. It identified the harmful L. pneumophila sg. 1 with an impressive specificity (100%) and slightly lower sensitivity (91.7%), and similar performances were reached in the classification of L. pneumophila sg. 2-15 and L. non-pneumophila. CONCLUSIONS: The results of this study show the DART-HMRS method has good accuracy, and it is an effective method for Legionella serogroup profiling. SIGNIFICANCE AND IMPACT OF THE STUDY: These preliminary findings could open a new avenue for the rapid identification and quick epidemiologic tracing of L. pneumophila, with a consequent improvement to risk assessment.


Assuntos
Legionella pneumophila , Legionella , Doença dos Legionários , Humanos , Espectrometria de Massas , Sorogrupo , Sorotipagem
14.
Metabolites ; 11(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34677375

RESUMO

Untargeted lipid fingerprinting with hand-held ambient mass spectrometry (MS) probes without chromatographic separation has shown promise in the rapid characterization of cancers. As human cancers present significant molecular heterogeneities, careful molecular modeling and data validation strategies are required to minimize late-stage performance variations of these models across a large population. This review utilizes parallels from the pitfalls of conventional protein biomarkers in reaching bedside utility and provides recommendations for robust modeling as well as validation strategies that could enable the next logical steps in large scale assessment of the utility of ambient MS profiling for cancer diagnosis. Six recommendations are provided that range from careful initial determination of clinical added value to moving beyond just statistical associations to validate lipid involvements in disease processes mechanistically. Further guidelines for careful selection of suitable samples to capture expected and unexpected intragroup variance are provided and discussed in the context of demographic heterogeneities in the lipidome, further influenced by lifestyle factors, diet, and potential intersect with cancer lipid pathways probed in ambient mass spectrometry profiling studies.

15.
Clin Lab Med ; 41(2): 221-246, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34020761

RESUMO

Rapid characterization of tissue disorder using ambient mass spectrometry (MS) techniques, requiring little to no preanalytical preparations of sampled tissues, has been shown using a variety of ion sources and with many disease classes. A brief overview of ambient MS in clinical applications, the state of the art in regulatory affairs, and recommendations to facilitate adoption for use at the bedside are presented. Unique challenges in the validation of untargeted MS methods and additional safety and compliance requirements for deployment within a clinical setting are further discussed. Development of a harmonized validation strategy for ambient MS methods is emphasized.


Assuntos
Espectrometria de Massas
16.
Anal Bioanal Chem ; 413(10): 2655-2664, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33247337

RESUMO

This review provides a summary of known molecular alterations in commonly used cancer models and strives to stipulate how they may affect ambient mass spectrometry profiles. Immortalized cell lines are known to accumulate mutations, and xenografts derived from cell lines are known to contain tumour microenvironment elements from the host animal. While the use of human specimens for mass spectrometry profiling studies is highly encouraged, patient-derived xenografts with low passage numbers could provide an alternative means of amplifying material for ambient MS research when needed. Similarly, genetic preservation of patient tissue seen in some organoid models, further verified by qualitative proteomic and transcriptomic analyses, may argue in favor of organoid suitability for certain ambient profiling studies. However, to choose the appropriate model, pre-evaluation of the model's molecular characteristics in the context of the research question(s) being asked will likely provide the most appropriate strategy to move research forward. This can be achieved by performing comparative ambient MS analysis of the disease model of choice against a small amount of patient tissue to verify concordance. Disease models, however, will continue to be useful tools to orthogonally validate metabolic states of patient tissues through controlled genetic alterations that are not possible with patient specimens.


Assuntos
Espectrometria de Massas/métodos , Neoplasias/patologia , Animais , Biomarcadores Tumorais/análise , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Transplante de Neoplasias , Neoplasias/química , Organoides/citologia , Organoides/patologia
17.
Toxicon ; 187: 122-128, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32891666

RESUMO

Direct analysis in real time (DART) coupled to high-resolution mass spectrometry (HRMS) was applied for the first time to veterinary forensic toxicology to investigate the presence of toxic compounds in hay after an episode of acute intoxication in a dairy cattle farm. In addition to gross field necropsy and histological examination, microbial cultures, and heavy metals analysis, the molecular fingerprinting of the suspected hay batch was investigated by DART-HRMS. DART-HRMS revealed a distinct signal of m/z 507.2289 in the hay batch thought to be associated with the digestive complications. A search on chemical structure databases matched the ion with asperphenamate, a toxin produced by Penicillium spp. and Aspergillus spp. Liquid Chromatography-HMRS analysis and electrospray-HRMS-MS/MS of the hay extracts further characterized the structure and confirmed the identification of the compound as asperphenamate. Asperphenamate is fungal metabolite which can have cytotoxic and antitumor activity in humans, and it is classified as acute toxicant and harmful if swallowed.


Assuntos
Doenças dos Bovinos/diagnóstico , Constipação Intestinal/veterinária , Fenilalanina/análogos & derivados , Animais , Aspergillus , Bovinos , Constipação Intestinal/complicações , Constipação Intestinal/diagnóstico , Toxicologia Forense , Fenilalanina/análise , Espectrometria de Massas em Tandem
18.
Int J Mol Sci ; 21(10)2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443844

RESUMO

Plasma and tissue from breast cancer patients are valuable for diagnostic/prognostic purposes and are accessible by multiple mass spectrometry (MS) tools. Liquid chromatography-mass spectrometry (LC-MS) and ambient mass spectrometry imaging (MSI) were shown to be robust and reproducible technologies for breast cancer diagnosis. Here, we investigated whether there is a correspondence between lipid cancer features observed by desorption electrospray ionization (DESI)-MSI in tissue and those detected by LC-MS in plasma samples. The study included 28 tissues and 20 plasma samples from 24 women with ductal breast carcinomas of both special and no special type (NST) along with 22 plasma samples from healthy women. The comparison of plasma and tissue lipid signatures revealed that each one of the studied matrices (i.e., blood or tumor) has its own specific molecular signature and the full interposition of their discriminant ions is not possible. This comparison also revealed that the molecular indicators of tissue injury, characteristic of the breast cancer tissue profile obtained by DESI-MSI, do not persist as cancer discriminators in peripheral blood even though some of them could be found in plasma samples.


Assuntos
Neoplasias da Mama/metabolismo , Carcinoma Ductal/metabolismo , Metabolismo dos Lipídeos , Lipidômica/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/sangue , Carcinoma Ductal/sangue , Feminino , Humanos , Lipídeos/sangue , Pessoa de Meia-Idade
19.
Front Vet Sci ; 7: 625067, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33553289

RESUMO

Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of paratuberculosis [Johne's disease (JD)], a chronic disease that causes substantial economic losses in the dairy cattle industry. The long incubation period means clinical signs are visible in animals only after years, and some cases remain undetected because of the subclinical manifestation of the disease. Considering the complexity of JD pathogenesis, animals can be classified as infected, infectious, or affected. The major limitation of currently available diagnostic tests is their failure in detecting infected non-infectious animals. The present study aimed to identify metabolic markers associated with infected and infectious stages of JD. Direct analysis in real time coupled with high resolution mass spectrometry (DART-HRMS) was, hence, applied in a prospective study where cohorts of heifers and cows were followed up annually for 2-4 years. The animals' infectious status was assigned based on a positive result of both serum ELISA and fecal PCR, or culture. The same animals were retrospectively assigned to the status of infected at the previous sampling for which all JD tests were negative. Stored sera from 10 infected animals and 17 infectious animals were compared with sera from 20 negative animals from the same herds. Two extraction protocols and two (-/+) ionization modes were tested. The three most informative datasets out of the four were merged by a mid-level data fusion approach and submitted to partial least squares discriminant analysis (PLS-DA). Compared to the MAP negative subjects, metabolomic analysis revealed the m/z signals of isobutyrate, dimethylethanolamine, palmitic acid, and rhamnitol were more intense in infected animals. Both infected and infectious animals showed higher relative intensities of tryptamine and creatine/creatinine as well as lower relative abundances of urea, glutamic acid and/or pyroglutamic acid. These metabolic differences could indicate altered fat metabolism and reduced energy intake in both infected and infectious cattle. In conclusion, DART-HRMS coupled to a mid-level data fusion approach allowed the molecular features that identified preclinical stages of JD to be teased out.

20.
Zygote ; 27(6): 413-422, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31566145

RESUMO

Human embryo studies have proposed the use of additional morphological evaluations related to the moment of the first cell divisions as relevant to embryo viability. Nevertheless, there are still not enough data available related to morphokinetic analysis and its relationship with lipid composition in embryos. Therefore, the aim of this study was to address the lipid profile of bovine embryos with different developmental kinetics: fast (four or more cells) and slow (two or three cells) at 40 h post-insemination (hpi), at three time points of in vitro culture (40, 112 and 186 hpi) and compare these to profiles of in vivo embryos. The lipid profiles of embryos were analyzed by matrix-assisted laser desorption ionization mass spectrometry, which mainly detected pools of membrane lipids such as phosphatidylcholine and sphingomyelin. In addition to their structural function, these lipid classes have an important role in cell signalling, particularly regarding events such as stress and pregnancy. Different patterns of lipids in the fast and slow groups were revealed in all the analyzed stages. Also, differences between in vitro embryos were more pronounced at 112 hpi, a critical moment due to embryonic genome activation. At the blastocyst stage, in vitro-produced embryos, despite the kinetics, had a closer lipid profile when compared with in vivo blastocysts. In conclusion, the kinetics of development had a greater effect on the membrane lipid profiles throughout the embryo culture, especially at the 8-16-cell stage. The in vitro environment affects lipid composition and may compromise cell signalling and function in blastocysts.


Assuntos
Blastocisto/metabolismo , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Fertilização in vitro/métodos , Lipídeos/análise , Animais , Blastocisto/citologia , Bovinos , Divisão Celular , Sobrevivência Celular , Técnicas de Cultura Embrionária , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Cinética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA